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On matrix product states for periodic boundary conditions
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Abstract. The possibility of a matrix product representation for eigenstates with energy and
momentum zero of a generalm-state quantum spin Hamiltonian with nearest-neighbour interaction
and periodic boundary condition is considered. For this representation we use the quadratic algebra
defined in Krebs and Sandow (Krebs K and Sandow S 1997 J. Phys. A: Math. Gen. 30 3165),
which is generated by 2m operators which fulfil m2 quadratic relations, endowed with a trace-like
function reflecting periodic boundary conditions. It is shown that not every eigenstate with energy
and momentum zero can be written in this way. An explicit counter-example is given. This is in
contrast to the case of open boundary conditions where every zero-energy eigenstate can be written
as a matrix product state using a Fock-like representation of the same quadratic algebra.

In a previous paper [1] it was shown that every zero-energy eigenstate of a general m-state
quantum spin Hamiltonian with nearest-neighbour interaction in the bulk and open boundary
conditions (i.e. with single-site terms at each boundary) can be written with the help of a
quadratic algebra. In this letter we search for an analogous statement for periodic boundary
conditions. By giving a counter-example we show that such a statement does not hold for
periodic boundary conditions. Let us start with a summary of the previous paper [1]. Consider
a Hamiltonian of the following form:

Hop = h1 +
L−1∑

j=1

hj,j+1 + hL. (1)

The bulk interaction term hj,j+1 acts locally on the sites j and j + 1 and is defined by

hj,j+1 =
m∑

µ,ν,σ,τ=1

γ µν
στ E

σµ

j Eτν
j+1 (2)

where the Eστ are m × m-matrices with entries (Eστ )µ,ν = δσ,µδτ,ν . The boundary terms h1

and hL act on the sites 1 and L, respectively, and have the form

h1 =
m∑

µ,σ=1

αµ
σ E

σµ

1 hL =
m∑

µ,σ=1

βµ
σ E

σµ

L . (3)

Following the suggestion of [2], for each Hamiltonian of this type we introduce a quadratic
algebra generated by 2m generators D1, . . . , Dm, X1, . . . , Xm fulfilling the following m2

quadratic relations determined by the coefficients of the bulk interaction term (2):
m∑

µ,ν=1

γ µν
στ DµDν = XσDτ − DσXτ σ, τ = 1, . . . , m. (4)
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By giving a representation it was shown in [1] that this algebra exits for every choice of the
coefficients γ µν

στ in (4). Furthermore, we introduce a Fock-representation of this algebra. We
assume that there is an auxiliary vector space V , where the generatorsD1, . . . , Dm,X1, . . . , Xm

act on, and states |V 〉 and 〈W | in V and its dual, respectively, such that the following relations
hold:
m∑

µ=1

αµ
σ 〈W |Dµ = −〈W |Xσ

m∑

µ=1

βµ
σ Dµ|V 〉 = Xσ |V 〉 σ = 1, . . . , m. (5)

The theorem proved in [1] makes two statements. The first one says that the state P defined
by

P =
m∑

τ1,τ2,...,τL=1

〈W |Dτ1Dτ2 . . . DτL |V 〉u(1)τ1
⊗ u(2)τ2

⊗ · · · ⊗ u(L)τL
(6)

where u(k)τ (τ = 1, . . . , m and k = 1, . . . , L) denotes the basis of the vector space of the kth
site, is an eigenstate of Hop (1) with energy zero, i.e. HopP = 0. This can be shown using only
the relations (4) and (5). A state of the form (6) is called a matrix product state. The second
statement says that for every zero-energy eigenstate P ′ of Hop one can find a representation
of the operators Dτ , Xτ and vectors 〈W |, |V 〉 such that P ′ can be written in the form (6). We
would like to stress that the bulk algebra (4) exists for every choice of the coefficients γ µν

στ

whereas the existence of the Fock representation (5), more precisely of the vectors 〈W | and
|V 〉, depends on the existence of a zero-energy eigenstate of Hop.

Now we turn to periodic boundary conditions and ask for statements analogous to that
described above. We consider a Hamiltonian of the form

Hper =
L∑

j=1

hj,j+1 (7)

with periodic boundary conditions where the bulk interaction term hj,j+1 is again given by (2).
As in the open boundary case, to each Hamiltonian of the form (7) we may again associate the
quadratic algebra (4) which is determined just by the coefficients of hj,j+1. On this algebra
we introduce a trace-like function. By this we mean a linear number-valued function which is
invariant under cyclic permutations and compatible with the quadratic relations (4). Thus, for
a trace-like function tr and for any two elements A and B of the algebra the relations

tr(AB) = tr(BA) (8)
m∑

µ,ν=1

γ µν
στ tr(ADµDνB) = tr(AXσDτB) − tr(ADσXτB) (9)

hold. If a non-trivial trace-like function tr exists on the quadratic algebra (4), the state P0

defined by

P0 =
m−1∑

τ1,...,τL=0

tr(Dτ1 . . . DτL)u
(1)
τ1

⊗ u(2)τ2
⊗ · · · ⊗ u(L)τL

(10)

is an eigenstate of Hper with energy and momentum zero (cf [3]). This corresponds to the
first statement of the theorem of [1]. To get the analogue of the second statement we ask the
following question: given an eigenstate P ′

0 of Hper with energy and momentum zero, we ask
for the corresponding trace-like function trP ′

0
such that P ′

0 is obtained by (10). As we will see
below, such a trace-like function does not exist in every case. We will present an example
of a Hamiltonian which has an eigenstate with energy and momentum zero which cannot be
written in the form (10).
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Before we come to this counter-example we would like to add some remarks on the
relations between trace-like functions on the algebra (4) and traces of representations of (4).
If one has a representation of (4) which admits a trace on the whole algebra or only on some
sectors, it is obvious that the values of this trace define a trace-like function. Therefore, the
existence of a trace-like function is a necessary condition for the existence of a representation
with a trace. On the other hand it is not clear that any trace-like function can be obtained as
the trace of an appropriate representation. Consider for example the algebra discussed in [3,
section 3.2]. This algebra can be decomposed into two sectors. For each sector a representation
with a well-defined and non-trivial trace is given in [3]. However, a representation which has
a trace on both sectors at the same time is not known to exist whereas a trace-like function
with this property can easily be defined. In [4] an infinite-dimensional representation is used
for which the trace is not well defined. Nonetheless, finite values which fulfil the relation for a
trace-like function can be obtained with the help of an ordering procedure. Next we would like
to mention that a trace-like function can be defined without using an appropriate representation
with a trace on it at all. For example, consider the coset algebra of (4), which is obtained by
taking Xτ = 0 for τ = 1, . . . , m, without any additional structure. If this coset algebra exists,
the coefficients of the independent monomials are the weights of zero-energy eigenstates of
the corresponding Hamiltonian with closed boundary conditions (i.e. the Hamiltonian (1) with
h1 = hL = 0) [5]. In some cases there are sectors of this algebra where the coefficients of the
independent monomials are invariant under cyclic permutations. In these cases the approach
of [5] also works for the corresponding models with periodic boundary conditions (but only in
the corresponding sectors) and the mapping which assigns to each monomial its coefficients
of the independent monomials defines a trace-like function. This happens in the case of the
three-state diffusion model considered in [6]. (It is interesting to note that only the sector with
an equal number of particles for all species was treated in [6]. One can show that on all other
sectors of this algebra a trace-like function does not exist.) We would like to stress that a state
of the form (10) has momentum zero if and only if tr is invariant under cyclic permutations.
Functions which are not invariant under cyclic permutations can be useful for the solution of
inhomogeneous equations. This is the case in the calculation of the diffusion constant on the
ring [7]. A useful observation is that the relations (4) are homogeneously quadratic. Therefore
they do not lead to relations of monomials or trace-like functions of monomials of different
lengths. Hence, on each sector generated by all monomials of a given length L, a trace-like
function can by defined separately. We will make use of this fact later.

In the following we give an example for a Hamiltonian which has an eigenstate with
energy and momentum zero which cannot be written in the form (10) since for this state an
appropriate trace-like function on the algebra (4) does not exist. Originally, my aim was to
prove the analogue of the theorem of [1] for periodic boundary conditions. Therefore I studied
simple Hamiltonians with a large number of zero-energy eigenstates. Among those I found the
subsequent counter-example. It has no physical significance. However, from this study it is
clear that a general positive statement for the existence of a trace-like function on the algebra (4)
needs more detailed conditions as the proof of the existence of a Fock-representation in the
open boundary case [1]. Such conditions are still missing.

We consider the Hamiltonian H3 which is defined as the Hamiltonian (7) on a three-site
lattice with three states per site and the following coefficients of the bulk interaction term (2):

γ 12
21 = γ 21

12 = −γ 31
13 = −γ 32

23 = −γ 12
12 = −γ 21

21 = γ 31
31 = γ 32

32 = α. (11)

All other coefficients are zero. This Hamiltonian has the following conserved quantities:

Nτ =
3∑

j=1

Eττ
j τ = 1, 2. (12)
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A straightforward but lengthy calculation shows that on the zero momentum sector all matrix
elements of H3 vanish. Hence, every translational invariant state has energy zero. We call this
sector U0; its dimension is 11. We ask which of the states of U0 can be obtained with the help
of a trace-like function on the algebra (4). Therefore we have to look for the conditions which
the relations (8) and (9) put onto the values of any trace-like functions. If tr is such a trace-like
function these conditions have the form

tr(Xτ1Dτ2Dτ3) − tr(Xτ2Dτ3Dτ1) =
∑

µ,ν

γ µν
τ1τ2

tr(DµDνDτ3) (13)

tr(Xτ1Xτ2Dτ3) − tr(Xτ3Xτ1Dτ2) =
∑

µ,ν

γ µν
τ2τ3

tr(Xτ1DµDν) (14)

where τ1, τ2, τ3 = 1, 2, 3. To simplify the notation for the following calculations we use the
invariance under cyclic permutations to push the X-generators in the argument of tr to the first
positions as done in (13) and (14). We consider (13) and (14) as a system of equations whose
solutions are trace-like functions. For each state in U0, which can be written in the form (10),
there is a class of solutions of (13) and (14). (A class of solutions consists of all trace-like
functions whose values differ only on the monomials with one or more X-generators.) Our
question is now, how many independent classes of solutions of (13) and (14) can be found? It
turns out that only ten independent classes of solutions exist corresponding to ten states of the
form (10). Thus, one state out of 11 remains which cannot be written in this form. Let us now
study the solutions in detail.

The sector U0 can be divided up into the sub-sector of symmetric states (states which are
invariant not only under cyclic permutation but under arbitrary permutations) and its orthogonal
complement. The symmetric sector has dimension ten. All symmetric states can be written
with the help of a trace-like function on the algebra (4). To see this we consider one-dimensional
representations, i.e. we choose the generators to be numbers and the trace-like function to be
the ordinary product of numbers. In this case the quadratic relations (4) with the coefficients
of (11) reduce to the equations

0 = d1x2 − d2x1

αd1d3 = d1x3 − d3x1 (15)

αd2d3 = d2x3 − d3x2

where we have replaced the capital letters in (4) by small ones. It is easy to check that for
each choice of d1, d2 and d3 one can find numbers x1, x2 and x3 such that the relations (15) are
fulfilled. Therefore the values of d1, d2 and d3 can be chosen arbitrarily. For one-dimensional
representations the coefficients of the state (10) are just the independent monomials of degree
three in the three variables d1, d2 and d3. There are ten such monomials allowing as many
independent states of the form (10). Taking into account that a linear combination of trace-like
functions is again a trace-like function every symmetric state can be written in the form (10).
The orthogonal complement of the symmetric sector is generated by the single state ϕ defined
by

ϕ =
∑

σ∈S3

sign(σ )u(1)σ (1) ⊗ u
(2)
σ (2) ⊗ u

(3)
σ (3) (16)

where S3 is the group of permutations of three objects. This state cannot be written with the
help of a trace-like function. To show this we attempt to construct a function tr∗

ϕ which fulfils
all properties of a trace-like function on the algebra (4) with the coefficients (11) and allows us
to write the state ϕ in the form (10). (The star indicates that it is not yet clear whether tr∗

ϕ can
be extended to a trace-like function on all monomials of length 3.) As pointed out above it is
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sufficient to define tr∗
ϕ only for monomials of length 3. For all further calculations the function

tr∗
ϕ is assumed to be invariant under cyclic permutations. The values of tr∗

ϕ for monomials of
length 3 containing only D-generators are uniquely determined by the requirement that tr∗

ϕ

allows a representation of ϕ in the form (10), i.e.

tr∗
ϕ(Dσ(1)Dσ(2)Dσ(3)) = sign(σ ) σ ∈ S3. (17)

The values of tr∗
ϕ on all other monomials containing only D-generators have to be zero. The

next step is to determine the values of tr∗
ϕ on the monomials with oneX-generator. These values

are constrained by the necessary conditions (13) and (14) which immediately result from the
quadratic relations (4) and the invariance of the trace-like function under cyclic permutations (8)
and thus hold for any trace-like function tr. We claim that tr∗

ϕ is a trace-like function and use the
necessary condition (13) to determine the values of tr∗

ϕ for monomials with one X-generator.
Note that on the left-hand side of (13) only differences of traces-like functions of monomials
appear whose indices differ through a cyclic permutation. Hence, if tr∗

ϕ(Xτ1Dτ2Dτ3) = tτ1τ2τ3

is a solution of (13) for given values of tr∗
ϕ(Dτ1Dτ2Dτ3) then tr∗

ϕ(Xτ1Dτ2Dτ3) = tτ1τ2τ3 +wτ1τ2τ3 ,
where the wτ1τ2τ3 are arbitrary numbers with wτ1τ2τ3 = wτ2τ3τ1 , is again a solution of (13).
Making use of this ambiguity, the values tr∗

ϕ(Xτ1Dτ2Dτ3) determined by (13) can be written in
the form

tr∗
ϕ(X1D2D3) = w123 + α tr∗

ϕ(X1D3D2) = w132 − α

tr∗
ϕ(X2D3D1) = w123 + α tr∗

ϕ(X2D1D3) = w132 − α (18)

tr∗
ϕ(X3D1D2) = w123 tr∗

ϕ(X3D2D1) = w132

where w123 and w132 are arbitrary constants. Up to these constants, the values of tr∗
ϕ in (18) are

uniquely determined by (13). The values of tr∗
ϕ on all other monomials with one X-generator

do not appear in further calculations. It remains to check whether condition (14) can be fulfilled
by the function tr∗

ϕ defined so far. Therefore we define the following function:

Zτ1τ2τ3 [tr] =
∑

µν

[γ µν
τ1τ2

tr(Xτ3DµDν) + γ µν
τ2τ3

tr(Xτ1DµDν) + γ µν
τ3τ1

tr(Xτ2DµDν)]. (19)

From (14) we find Zτ1τ2τ3 [tr] = 0 as a necessary condition for tr being a trace-like function.
Taking the values of tr∗

ϕ defined in (18) we find

Z012[tr∗
ϕ] = 2α2 �= 0. (20)

Hence, the function tr∗
ϕ defined above is not a trace-like function on the algebra (4). We would

like to stress that there was no ambiguity in the definition of tr∗
ϕ so far up to the constants w123

and w132 which in turn do not appear in (20). Therefore a trace-like function on the quadratic
algebra (4) whose values on the monomials without X-generators are determined by (17) does
not exist at all. Hence, the state ϕ cannot be written in the form (10) with the help of an
appropriate trace-like function on the quadratic algebra (4). This is what we wanted to show.
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motivation. I would also like to thank Ulrich Bilstein and Silvio Dahmen for critically reading
the manuscript and many helpful comments. This work was supported by the TMR Network
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